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The standardized mutual active and reactive sound power of a clamped plate,
representing the energy aspect of the reciprocal interactions of two di!erent in vacuo modes,
has been computed. It was assumed that the vibrations are axisymmetric, elastic and time
harmonic, the plate's transverse de#ection is small as compared with the plate's size, and that
the vibration velocity is small as compared with the acoustic wavenumber generated.
The Kirchho!}Love theory of a perfectly elastic plate was used. The integral formulae for
the mutual sound power were transformed into their Hankel representations which made
possible their subsequent computation. A closed path integral was used to express
the integral in its Hankel representation to compute the mutual active sound power. The
asymptotic stationary phase method was used to compute the two magnitudes, i.e.,
the mutual active and reactive sound power. The results obtained are the asymptotic
formulae valid for the acoustically fast waves. The oscillating as well as the non-oscillating
terms have been identi"ed in the formulae to make possible their further separate analysis.
The availability of the asymptotic formulae makes possible some fast numerical
computations of the mutual sound power. Moreover, the formulae presented herein,
together with those for the individual modes known from the literature, make a complete
basis for further computations of the total sound power of the plate's damped and forced
vibrations in #uid.
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1. INTRODUCTION

It is necessary to determine the total sound power, active and reactive, to correctly design
any acoustic system. For that purpose both methods, experimental and purely theoretical,
are usually used. However, a number of problems have not yet been considered analytically,
because of their complexity even for considerably simple surface sound sources as, e.g., the
square piston [1] with numerous simplifying assumptions made. In the case of annular
plates [2}5], the analytical considerations of the problem of sound radiation are even more
complex.

Many theoretical investigations are still performed to "nd solutions to the problem of
particular vibrating surface sound sources, because existing solutions are highly general and
only allow rough approximations of the magnitudes describing sound radiation of the
sources. In order to analyze the energy aspect of the sound source, it is absolutely necessary
to "nd the active and reactive sound power for individual in vacuo modes as well as for the
pairs of two di!erent in vacuo modes. The complete theoretical analysis of sound radiation
is possible only if all the magnitudes are known. This makes possible the computation of the
total sound power of any forced and damped surface sources in a #uid.
022-460X/02/020307#17 $35.00/0 ( 2002 Academic Press
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The problem of free vibrations of various kinds of surface sound sources has been
adequately examined for circular and annular plates (cf. references [6}12]). The sound
pressure distribution of an annular plate was determined by computing the sound energy
stream and presented in references [13}15]. Some analytical formulations for the plate in
the form of multiple expansion series have been reached in reference [2]. The active and
reactive sound power of a clamped annular plate has been given in reference [5]. An
asymptotic}impedance approach was employed to "nd the e!ective damping parameter of
a circular plate in reference [16]. The mutual sound power of plate reference [17], and the
total sound power of a forced and damped plate in a #uid [18] have also been presented in
the literature.

The analytical formulations for the active and reactive mutual sound power of some pairs
of two di!erent in vacuo modes of an annular plate have not been presented yet. In this
paper, an asymptotic}impedance approach has been employed to determine those
formulations. The problem of free vibrations has been solved using the Kirchho!}Love
theory of a perfectly elastic homogeneous plate. The path integral computing method in the
complex variable plane is used to express the integral for the active mutual sound power in
the form computable by means of the stationary phase method. Further, the stationary
phase method is employed immediately to determine the formula for the reactive mutual
sound power. This leads to some asymptotic formulae valid for the acoustically fast waves,
i.e., when the acoustic wavenumber is greater than the structural wavenumber. The results
obtained are illustrated graphically in the form of several plotted curves of the mutual
sound power for some sample pairs of two di!erent in vacuo modes of the plate in the
dimensionless frequency domain. Moreover, the asymptotic formulae presented herein
together with those for the sound power of the individual in vacuo modes (given in reference
[5]) can make the complete basis for a full, purely theoretical, analysis of the energy aspect
of a forced and damped annular plate in a #uid.

2. SOUND RADIATION

The sound power of the reciprocal interactions of pairs of two di!erent in vacuo modes of
a source is necessary for determining its total sound power. The Kirchho!}Love theory of
a perfectly elastic plate is used to analyze some time-harmonic and axisymmetric processes.
The plate is clamped in a coplanar and perfectly rigid ba%e, i.e., the vibration velocity
distribution is equal to zero on all the ba%e's surface. The plate's radii are r

1
(internal) and

r
2

(external) respectively.

2.1. THE VELOCITY DISTRIBUTION OF A PLATE

A detailed analysis of the free vibrations of a clamped annular plate has been presented in
the literature several times (e.g., references [5, 11, 12]). All the derivations of the plate's
motion presented below are quoted from reference [5]. The plate's equation of motion of
some time-harmonic and axisymmetric processes can be presented in the amplitude form
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where r is the plate's radius, n"0, 1, 2,2 is the plate's individual mode index, k
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is the nth eigenfrequency, ., h, E are

the density, thickness, and the Young modulus of the plate, respectively, and
D"Eh3/[12(1!l2)] is the plate's sti!ness, l is the Poisson ratio of its material, + 4
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and + 2
r
"L2/Lr2#r~1L/Lr, the plate's transverse de#ection amplitude of its nth individual

mode is predicted as
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are the functions of zero order: Bessel,

modi"ed Bessel, Neumann and McDonald respectively. The clamped plate implies the
following boundary conditions:

g
n
(r
1
, t)"0, g

n
(r
2
, t)"0, Lg

n
(r, t)/Lr D

r/r1
"0, Lg

n
(r, t)/Lr D

r/r2
"0, (3)

where t is a time variable. Solution (2) inserted into the boundary conditions (3) provides the
equation system
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where s"r
2
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1
'1 is the plate's geometric parameter, x
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are the roots, or
eigenvalues, of the plate's frequency equation
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where the following denotations are used:
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The derivation of equation (5) has been shown in reference [5] and was reached by setting
the main determinant of the equation system (4) to zero.

Equation system (4) provides three of the four constants
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The fourth constant

A
n
"g~1

n
J(s2!1)/2 (10)

is derived from the standardization condition
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2.2. THE SOUND PRESSURE DISTRIBUTION

The vibrating surface sound source radiates the sound pressure into a hemisphere z*0,
"lled with a loss-less gaseous medium of rest density .

0
and wave propagation velocity c.

The distance between the two di!erent points, M(r) (in the sound"eld) and M
0
(r
0
)

(at the source), is Dr!r
0
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!2Rr

0
cos (r, r

0
)]1@2, where r, r
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are the radius vectors

of the points and cos (r, r
0
)"sin0 cos (u!u

0
) in spherical co-ordinates. In all the

theoretical analyses presented herein, the locations of the "eld points are presented in the
spherical co-ordinates R, 0, u and the locations of the source points are presented in the
polar co-ordinates r

0
, u

0
in plane z

0
"0.

The basis of the analysis is the integral formula by Rayleigh for sound pressure
distribution

p(r)"
!ik.

0
c

2n P
S0

l (r
0
)
e*k Dr!r

0
D

Dr!r
0
D
dS

0
, (11)

where l(r
0
) is the plate's normal velocity distribution, S

0
is the plate's area, k is the acoustic

wavenumber, .
0
, c are the density of air and sound velocity in air respectively. Equation (11)

cannot be integrated in its current form because its integrand comprises an exponential
component and therefore it is necessary to express the sound pressure in its Hankel
representation (cf. Reference [19])
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where q is a complex acoustic wavelength (cf. Figure 1), r, u, z are the polar co-ordinates, a is
an angle variable,
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is a characteristic function of the vibrating plate, and the complex parameter

c"c@#icA"Jk2!q2 represents the propagation of both waves*homogeneous
and non-homogeneous*in the direction of increasing positive values of z. The sound
pressure of any point of half-space z*0, produced by the axisymmetric vibrations of the
source, is

p (r, z)"k.
0
c P
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0

=I (q)J
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qdq. (14)

The sound pressure radiated depends on time as follows p(r, z, t)"p(r, z)e~ut. Completing
the term e*cz with this dependence gives e~*ute*cz"e*(c{z~ut)e~c{{z. Assuming that c@, cA'0,
it is obvious that the term e*(c{z~ut) is valid for some planar homogeneous waves propagated
in the direction of increasing values of z. On the other hand, the term e~c{{z characterizes the
non-homogeneous wave, whose damping increases proportionally with the value of z. The
integrand in equation (14) comprises the product of functions characterizing both kinds of
waves*cylindric of zero order J

0
(qr) and planar e*cz. The integration is performed within

the limits (0, R), along the real axis in the plane of complex variable q"q@#iqA (cf. Figure

1). The branch point of term c"Jk2!q2 in equation (14) is q"k, and its phase is equal to

zero within the limits (0, k) or n/2 within the limits (k, R) and Jk2!q2"iJq2!k2 . The
integration is performed along the bottom side of the branch point.



Figure 1. The integration path in a plane of two complex variables q and z used in equations (14), (20) and (21),
(24), (28), (30), (46) (48b), (51) respectively (cf., reference [23]).
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3. THE SOUND POWER OF THE RECIPROCAL INTERACTIONS

The reciprocal interactions of pairs of two di!erent in vacuo modes of a plate are
transmitted via the plate's material. The two values of the standardized mutual sound power,
active and reactive, are positive for some frequencies and negative for the other ones. The
positive values result from the fact that the plate absorbs some sound energy via its nth mode
transmitted via its mth mode, whereas, the negative values result from the fact that some
sound energy is lost by the plate via its nth mode and absorbed via its mth mode. For the
frequencies tending towards in"nity or zero (uPR, uP0) both magnitudes vanish. For
some other frequencies, the amplitude of the mutual sound power is also equal to zero. This
shows that for those frequencies there are no reciprocal interactions of some pairs of two
di!erent in vacuo modes. The additional sound power, lost by the vibrating plate via its nth
mode to overcome the resistance produced by its mth mode is understood as the mutual
sound power P

nm
of a pair of two di!erent in vacuo modes, the nth and the mth, further

referred to as nm. The additional power can be expressed by the well-known integral formula
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where S is a closed surface, enclosing the radiation source, l*
n
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is the nth conjugate

mode shape of the plate, u
n

is the plate's nth eigenfrequency, i"J!1, p
m

is the sound
pressure emitted by the plate via its mth in vacuo mode. The integration in equation (15) is
performed over surface S. The integral computed over the hemisphere enclosing the plate
vanishes with an increase in its radius based on Sommer"eld's radiation condition [19]. The
integral computed over the planar and perfectly rigid surface of the ba%e is equal to zero,
because the value of its velocity distribution is also equal to zero. Only the integral
computed over the plate's surface is non-zero. Therefore, the integration in equation (15) is
performed over the whole surface of the plate, i.e., within the limits [r

1
, r

2
]. The integration

carried out in the polar co-ordinates within the limits [0, 2n] of angle variable u is trivial,
provided that the processes considered herein are axisymmetric.

It is worth noting that such magnitudes as the sound power and the sound impedance are
equivalent. The sound impedance was considered in the case of the vibrating circular plate
[17, 20], and can be expressed by virtue of its de"nition (cf., reference [21])
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where X
nm

is the mutual sound resistance, >
nm

is the mutual sound reactance,
SDl

n
D2T"(2S)~1 :

S
l2
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(r) dS is the value of time-averaged velocity square of the plate's nth

in vacuo mode. In this paper an analysis of the sound power P
nm

has been presented.

3.1. THE INTEGRAL FORMULAE

The sound pressure has been presented in the Hankel representation in equation (14) to
make possible its further computation. The equation can also be used for deriving the sound
pressure p

m
(r) radiated by the mth individual mode of the plate, when z"0. It is convenient

to de"ne the function characterizing the mth mode shape as
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where r
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is the distance between the plate's point and the plate's center. Computing the
integral in equation (17) provides its elementary form
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Equations (14) and (18) make possible expressing the sound pressure radiated by the mth
individual mode, for z"0, in the form of
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Inserting equation (21) into equation (15) provides the mutual sound power in its Hankel
representation
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The reference sound power
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consists of the active components only and
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Inserting equation (26) into equation (25) gives
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which is used to standardize the mutual sound power from equation (24)
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are the standardized mutual sound power, active and reactive,
respectively, and
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The integration in equation (28) is performed in the plane of complex variable x along the

path shown in Figure 1. The phase of term J1!x2 in equation (28) is equal to zero within

the limits (0, 1) or n/2 within the limits (1, R) and J1!x2"iJx2!1, which is identical
to the phase of the analogous term in equation (14).

3.2. THE ASYMPTOTIC FORMULATIONS

Limiting the integration in equation (28), along the path shown in Figure 1, to the "nite
limits 0)x)1 provides the standardized active mutual sound power
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The integral in equation (30) can be expressed using another integral computed within the
same limits but along a di!erent path shown in Figure 2. The method was used earlier by
Levine and Leppington [16] or by Rdzanek [17] dealing with circular plates. It is necessary
to introduce function F in the plane of complex variable z as follows:

F(z)"sM!d
n
d
m
[G

1
(sx

n
)G

1
(x

m
)#G

1
(x

n
)G

1
(sx

m
)]J

0
(bz)

#[d
n
G

1
(sx

n
)G

0
(x

m
)#d

m
G

0
(x

n
)G

1
(sx

m
)]zJ

1
(bz)

#sd
n
d
m
G

1
(sx

n
)G

1
(sx

m
)J

0
(sbz)N H(1)

0
(sbz)

#d
n
d
m
G

1
(x

n
)G

1
(x

m
)J

0
(bz)H(1)

0
(bz)

#sM!s[d
n
G

1
(sx

n
)G

0
(sx

m
)#d

m
G

0
(sx

n
)G

1
(sx

m
)]J

0
(sbz)



Figure 2. The integration path C in equations (32), (33), (35), (41) (cf., references [4, 5, 16]). This path is used to
derive the asymptotic formula for the mutual active sound power only.

314 W. P. RDZANEK JR
#[d
n
G

1
(x

n
)G

0
(sx

m
)#d

m
G

0
(sx

n
)G

1
(x

m
)]J

0
(bz)

!z[G
0
(x

n
)G

0
(sx

m
)#G

0
(sx

n
)G

0
(x

m
)]J

1
(bz)

#zsG
0
(sx

n
)G

0
(sx

m
)J

1
(sbz)NzH(1)

1
(sbz)

#MG
0
(x

n
)G

0
(x

m
)zJ

1
(bz)![d

n
G

1
(x

n
)G

0
(x

m
)

#d
m
G

0
(x

n
)G

1
(x

m
)]J

0
(bz)NzH(1)

1
(bz), (31)

where ReF(x)"t
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(x)t

m
(x). Function F in equation (31) must be analytical and regular

within and along the path C and conditions k'k
n
, k'k

m
, nOm must be satis"ed. Then,

based on the Cauchy theorem, the following equality must be satis"ed (cf., reference [17]):
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where the integral is computed along path C, which is closed above the branch cut within
the limits (1,#R) (cf., Figure 2) as a consequence of using the "rst kind Hankel function.
The Cauchy theorem on residue results in the symbolic form of equation (32)
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following auxiliary functions are employed to compute the residue in the "rst order poles:
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The active sound power consists of two parts, i.e., non-oscillatingPI
a,nm

and oscillatingPI
a,nm

.
The residues in the "rst order poles provide a contribution to the former part only. The
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contribution is
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where
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Several asymptotic formulae, valid for large arguments only, are used to compute the
integral from equation (35) within the in"nite limits (1,#R)
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The integral from equation (35) is computed by means of the stationary phase method
(cf., reference [22]). The integral provide contribution to the oscillating part of the sound
power only, with the exception for the case when the arguments of Bessel and Neumann
functions are identical in equation (39a), i.e., s"1, which transforms equation (39a) to the
form

J
0
(u)N

1
(u)&!(nu)~1[1#sin 2u], u3Mbx, sbxN. (40)

Equation (40) consists of two terms: !1/(nu) and !sin 2u/(nu), after integration in
equation (35) the former represents the non-oscillating contribution and the latter the
oscillating contribution to the active mutual sound power. The non-oscillating contribution
may be computed by means of the following formula:
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The sum of all the non-oscillating contributions provides
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which is the non-oscillating part of the active mutual sound power, and
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The sum of all the oscillating contributions from the integral provides the oscillating part
of the active mutual sound power
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The sum of both parts, from equations (42) and (44), provides the asymptotic formula for
the standardized active mutual sound power

P
a,nm
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#PI
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#O (d2
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b~3@2), (45)

where the term O(2) represents the approximation error (cf., the modulus and phase cosine
of the mutual sound power shown in Figures 3}5).

The determination of the standardized reactive mutual sound power requires computing
the integral in equation (28) within the in"nite limits x3(1, #R), along the path shown in

Figure 1, which leads to the transformation 1/J1!x2"!i/Jx2!1 and results in
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Figure 3. The standardized mutual sound power P
nm

for s"1)2: (a), (b) the modulus DP
nm

D and (c), (d) the phase
cosine cosu

nm
. All the dashed curves in all the plots presented in Figure 3}5 are obtained from the integral

formulae, and all the solid curves from the asymptotic formulae.
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Further asymptotic approximations for the products of Bessel's functions are used, under,
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They are valid for large arguments only. The formulae
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Figure 4. The standardized mutual sound power P
nm

for s"2: (a), (b) the modulus DP
nm

D and (c), (d) the phase
cosine cosu

nm
.
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are used for computing the non-oscillating part PM
r,nm

of integral (46). The non-oscillating
part PM
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of the reactive mutual sound power can be expressed as
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Further denotations are introduced
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Figure 5. The standardized mutual sound power P
nm

for s"5: (a), (b) the modulus DP
nm

D and (c), (d) the phase
cosine cosu

nm
.
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to present equation (49) in its "nal form
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The asymptotic formula
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is obtained by the stationary phase method (cf., reference [22]), where r"0, 1, 2. The
formula is used for computing the oscillating part PI
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of integral (46) to present it in its

"nal form as
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The sum of equations (50) and (52) provides the expression representing the standardized
reactive mutual sound power

P
r,nm

"PM
r,nm

#PI
r,nm

#O (d2
n
d2
m
b~3@2). (53)

The term O (2) in equation (53) represents the approximation error analogous to that in
equation (45) (cf., the modulus and phase cosine of the mutual sound power plotted in
Figures 3}5). The asymptotic formulae (45) and (53) have now been presented in their
elementary forms. They are valid if the conditions k'k

n
, k'k

m
, and kr

1
'10 are satis"ed,

i.e., for the acoustically fast waves.

3.3. Some numerical results

The frequency characteristics presented herein indicate that the closer the indices nm of
the interacting mode pair the greater is the mutual sound power generated. A particular
case occurs when the distance between the indices is equal to zero, i.e., n"m, which results
in the sound power for individual in vacuo modes providing the greatest contribution to the
total sound power of the plate. This case has been discussed earlier in reference [5].

If the distance between indices nm is an odd number (cf., sub-"gures (b) and (d) in Figures
3}5), the non-oscillating part vanishes and the oscillating part is well marked. On the other
hand, if the distance is an even number (cf., sub-"gures (a) and (c) in Figures 3}5), the
non-oscillating part is well marked and the oscillating part has a smaller value of its
amplitude for di!erent values of the geometric parameter s, than in the former case. This is
valid for both parts of the mutual sound power, active and reactive.

Some characteristic oscillations in the oscillating parts of the mutual sound power can be
observed in all the frequency characteristics presented herein. They are induced by strong
mechanical interactions between both rigidly clamped edges of the plate. The greater the
similarity of the plate's shape to an annulus, i.e., r

1
Pr

2
, the greater is the number of

oscillations per frequency unit which decreases when the plate approximates a circle, i.e.,
r
1
P0, r

2
"const. Both oscillating and non-oscillating parts have been isolated in the

asymptotic formulae, which is not possible while employing any other known analytic method.
The analysis of both parts con"rms some earlier assumptions, e.g., that the non-oscillating part
vanishes if the distance between the indices of the interacting mode pair is an odd number.

The asymptotic formulae for the standardized mutual sound power, active and reactive,
are valid for the acoustically fast waves presented in their elementary forms. This means that
the formulae make possible some fast and satisfactorily precise numerical computations for
practical use. This is the main advantage of the formulae as compared with the formulae for
the magnitudes under consideration as e.g., those presented in the form of multiple series
(cf., reference [2]). Their main disadvantage is that they are valid for the acoustically fast
waves only. In the case of the acoustically slow waves, i.e., k(k

n
and k(k

m
, the integral

formulae (30) and (46) or any other valid analytical formulae must be used. No analytical
formulas for the reactive mutual sound power of a clamped annular plate have been
reported before. The formulae presented in this paper together with those given in reference
[5] can be used as the complete basis for determination of the total sound power of a forced,
damped and clamped annular plate in #uid.

4. CONCLUDING REMARKS

So far, no asymptotic formulae in their elementary form have been presented for the
mutual active and reactive sound power for an annular plate. A circular plate is a simpler
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case than an annular plate is the sense of both physics and computations. The complexity of
the annular plate's behavior is caused mainly by its boundary conditions, meaning that
both edges of the plate are rigidly clamped to the ba%e, resulting in several modi"cations of
the plate's motion and radiation, when compared with a circular plate. Moreover, the
asymptotic methods used for an annular plate must be more general than those used for
a circular plate.

The asymptotic formulae presented herein can be used for some fast and satisfactorily
precise numerical computations of the total sound power. The formulae together with the
results presented in reference [5] make a complete basis for this. The formulae consist of
some elementary expressions only, and therefore they make possible some de"nitely faster
numerical computations than in the case of using any other analytical methods. Their main
disadvantage is that they are valid for high frequencies only, i.e., k

n
'k and k

m
'k. For the

other frequencies it is necessary to use the other currently available computationally slower
methods such as those given in reference [12] or the integral formulae presented herein
together with those given in reference [5].
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